Reinforcement Learning For Autonomous Quadrotor Helicopter

This book is the fifth volume in the successful book series Robot Operating System: The Complete Reference. The objective of the book is to provide the reader with comprehensive coverage on the Robot Operating System (ROS), which is currently considered to be the primary development framework for robotics applications, and the latest trends and contributing systems. The content is divided into six parts. Part I presents for the first time the emerging ROS 2.0 framework, while Part II focuses on multi-robot systems, namely on SLAM and Swarm coordination. Part III provides two chapters on autonomous systems, namely self-driving cars and unmanned aerial systems. In turn, Part IV addresses the contributions of simulation frameworks for ROS. In Part V, two chapters explore robotic manipulators and legged robots. Finally, Part VI presents emerging topics in monocular SLAM and a chapter on fault tolerance systems for ROS. Given its scope, the book will offer a valuable companion for ROS users and developers, helping them deepen their knowledge of ROS capabilities and features.

This volume contains the proceedings of the tenth International Conference on Intelligent Autonomous Systems (IAS-10) in Baden Baden, Germany. The IAS conference brings together leading researchers interested in all aspects of autonomy and adaptivity of artificial systems. One of the driving forces of this conference is the observation that intelligence and autonomy is best studied and demonstrated using mobile robots acting autonomously in real-world environments and under challenging conditions. The papers contained in the final program of the conference cover a wide spectrum of research in autonomous intelligent systems including agent technology, walking robots, motion planning, robot control, multi-robot systems, navigation, perception, applications, learning and adaptation, and humanoid robots, just to mention some of them. The organization of IAS-10 aims to provide the reader with new ideas and to exchange knowledge in relation to the research of autonomous systems. Previous IAS proceedings are available through IOS Press as well.

Despite the increasing population (the Food and Agriculture Organization of the United Nations estimates 70% more food will be needed in 2050 than was produced in 2006), issues related to food production have yet to be completely addressed. In recent years, Internet of Things technology has begun to be used to address different industrial and technical challenges to meet this growing need. These Agro-IoT tools boost productivity and minimize the pitfalls of traditional farming, which is the backbone of the world's economy. Aided by the IoT, continuous monitoring of fields provides useful and critical information to farmers, ushering in a new era in farming. The IoT can be used as a tool to combat climate change through greenhouse automation; monitor and manage water, soil and crops; increase productivity; control insecticides/pesticides; detect plant diseases; increase the rate of crop sales; cattle monitoring etc. Agricultural Informatics: Automation Using the IoT and Machine Learning focuses on all these topics, including a few case studies, and they give a clear indication as to why these techniques should now be widely adopted by the agriculture and farming industries.

This book gathers papers presented during the 4th International Conference on Electrical Engineering and Control Applications. It covers new control system models, troubleshooting tips and complex system requirements, such as increased speed, precision and remote capabilities. Additionally, the papers discuss not only the engineering aspects of signal processing and various practical issues in the broad field of information transmission, but also novel technologies for communication networks and modern antenna design. This book is intended for researchers, engineers and advanced postgraduate students in the fields of control and electrical engineering, computer science and signal processing, as well as mechanical and chemical engineering.

In recent years, industries have transitioned into the digital realm, as companies and organizations are adopting certain forms of technology to assist in information storage and efficient methods of production. This dependence has significantly increased the risk of cyber crime and breaches in data security. Fortunately, research in the area of cyber security and information protection is flourishing; however, it is the responsibility of industry professionals to keep pace with the current trends within this field. The Handbook of Research on Cyber Crime and Information Privacy is a collection of innovative research on the modern methods of crime and misconduct within cyber space. It presents novel solutions to securing and preserving digital information through practical examples and case studies. While highlighting topics including virus detection, surveillance technology, and social networks, this book is ideally designed for cybersecurity professionals, researchers, developers, practitioners, programmers, computer scientists, academicians, security analysts, educators, and students seeking up-to-date research on advanced approaches and developments in cyber security and information protection.

This two-volume set (CCIS 1395-1396) constitutes the refereed proceedings of the Third International Conference on Futuristic Trends in Network and Communication Technologies, FTNCT 2020, held in Taganrog, Russia, in October 2020. The 80 revised papers presented were carefully reviewed and selected from 291 submissions. The prime aim of the conference is to invite researchers from different domains of network and communication technologies to a single platform to showcase their research ideas. The selected papers are organized in topical sections on communication technologies; security and privacy; futuristic computing technologies; network and computing technologies; wireless networks and Internet of Things (IoT).

The book reveals many different aspects of motion control and a wide multiplicity of approaches to the problem as well. Despite the number of examples, however, this volume is not meant to be exhaustive: it intends to offer some original insights for all researchers who will hopefully make their experience available for a forthcoming publication on the subject.

This book covers the start-of-the-art research and development for the emerging area of autonomous and intelligent
Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (UAV) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point. This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction.

Incorporating papers from the 12th International Symposium on Experimental Robotics (ISER), December 2010, this book examines the latest advances across the various fields of robotics. Offers insights on both theoretical concepts and experimental results.

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

This book describes the latest advances in intelligent techniques such as fuzzy logic, neural networks, and optimization algorithms, and their relevance in building intelligent information systems in combination with applied mathematics. The authors also outline the applications of these systems in areas like intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. By sharing fresh ideas and identifying new targets/problems it offers young researchers and students new directions for their future research. The book is intended for readers from mathematics and computer science, in particular professors and students working on theory and applications of intelligent systems for real-world applications.

This book gathers selected high-quality research papers presented at International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021) held at NCR New Delhi, India, during March 2021, 2021, jointly organized by Galgotias University, India, and Department of Information Engineering and Mathematics Universita Di Siena, Italy. It discusses emerging topics pertaining to advanced computing, intelligent technologies, and networks including AI and machine learning, data mining, big data analytics, high-performance computing network performance analysis, Internet of things networks, wireless sensor networks, and others. The book offers a valuable asset for researchers from both academia and industries involved in advanced studies.

This volume constitutes the proceedings of the 18th Asia Simulation Conference, AsiaSim 2018, held in Kyoto, Japan, in August 2018. The 45 revised full papers presented in this volume were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on modeling and simulation technology; soft computing and machine learning; high performance computing and cloud computing; simulation technology for industry; simulation
technology for intelligent society; simulation of instrumentation and control application; computational mathematics and computational science; flow simulation; visualization and computer vision to support simulation.

The two-volume set LNCS 9242 + 9243 constitutes the proceedings of the 5th International Conference on Intelligence Science and Big Data Engineering, ISciDE 2015, held in Suzhou, China, in June 2015. The total of 126 papers presented in the proceedings was carefully reviewed and selected from 416 submissions. They deal with big data, neural networks, image processing, computer vision, pattern recognition and graphics, object detection, dimensionality reduction and manifold learning, unsupervised learning and clustering, anomaly detection, semi-supervised learning.

This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.

Going beyond the traditional field of robotics to include other mobile vehicles, this reference and "recipe book" describes important theoretical concepts, techniques, and applications that can be used to build truly mobile intelligent autonomous systems (MIAS). With the infusion of neural networks, fuzzy logic, and genetic algorithm paradigms for MIAS, it blends modeling, sensors, control, estimation, optimization, signal processing, and heuristic methods in MIAS and robotics, and includes examples and applications throughout. Offering a comprehensive view of important topics, it helps readers understand the subject from a system-theoretic and practical point of view.

The theory and applications of intelligent systems is today an important field of research. This book is an up-to-date collection of seventeen chapters, written by recognized experts in the field. In an introductory mathematical foundations part an overview of generalizations of the integral inequalities for nonadditive integrals and a construction of the General Prioritized Fuzzy Satisfaction Problem is given. Then different aspects of robotics are presented, such as the differences between human beings and robots, the motion of bipedal humanoid robots, and an evaluation of different autonomous quadrotor flight controllers. Also Fuzzy Systems are presented by a model of basic planar imprecise geometric objects allowing various applications in image analysis, GIS, and robotics, as well as a type-2 fuzzy logic in a software library for developing perceptual computers, and a two--degree--of--freedom speed control solutions for a brushless Direct Current motor. The book also presents recent applications in medicine such as a Virtual Doctor System, methods for a face to face human machine interaction, and an emotion estimation, with applications for multiple diseases and the effect of the applied therapy. The last part of the book covers different applications in transportation, network monitoring, and localization of pedestrians in images.


This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students.

This book describes the latest advances in fuzzy logic, neural networks, and optimization algorithms, as well as their hybrid intelligent combinations, and their applications in the areas such as intelligent control, robotics, pattern recognition, medical diagnosis, time series prediction, and optimization. The topic is highly relevant as most current intelligent systems and devices use some form of intelligent feature to enhance their performance. The book also presents new and advanced models and algorithms of type-2 fuzzy logic and intuitionistic fuzzy systems, which are of great interest to researchers in these areas. Further, it proposes novel, nature-inspired optimization algorithms and innovative neural models. Featuring contributions on theoretical aspects as well as applications, the book appeals to a wide audience. This book showcases new theoretical findings and techniques in the field of intelligent systems and control. It presents in-depth studies on a number of major topics, including: Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control, Guidance, Navigation and Control of Aerial Vehicles, and so on. Given its scope, the book will benefit all researchers, engineers, and graduate students who want to learn about cutting-edge advances in intelligent systems, intelligent control, and artificial intelligence.

Advances in Computers, Volume 116, presents innovations in computer hardware, software, theory, design, and applications, with this updated volume including new chapters on Teaching Graduate Students How to Review Research Articles and How to Respond to Reviewer Comments, ALGATOR - An Automatic Algorithm Evaluation System, Graph Grammar Induction, Asymmetric Windows in Digital Signal Processing, Intelligent Agents in Games: Review With an Open-Source Tool, Using Clickstream Data to Enhance Reverse Engineering of Web Applications, and more. Contains novel subject matter that is relevant to computer science Includes the expertise of contributing authors Presents an easy
to comprehend writing style

This carefully edited volume aims at providing readers with the most recent progress on intelligent autonomous systems, with its particular emphasis on intelligent autonomous ground, aerial and underwater vehicles as well as service robots for home and healthcare under the context of the aforementioned convergence. "Frontiers of Intelligent Autonomous Systems” includes thoroughly revised and extended papers selected from the 12th International Conference on Intelligent Autonomous Systems (IAS-12), held in Jeju, Korea, June 26-29, 2012. The editors chose 35 papers out of the 202 papers presented at IAS-12 which are organized into three chapters: Chapter 1 is dedicated to autonomous navigation and mobile manipulation, Chapter 2 to unmanned aerial and underwater vehicles and Chapter 3 to service robots for home and healthcare. To help the readers to easily access this volume, each chapter starts with a chapter summary introduced by one of the editors: Chapter 1 by Sukhan Lee, Chapter 2 by Kwang Joon Yoon and Chapter 3 by Jangmyung Lee.

This volume presents a collection of papers presented at the 16th International Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the International Foundation of Robotic Research (IFRR) and its 16th edition took place in Singapore over the period 16th to 19th December 2013. The ISRR is the longest running series of robotics research meetings and dates back to the very earliest days of robotics as a research discipline. This 16th ISRR meeting was held in the 30th anniversary year of the very first meeting which took place in Bretton Woods (New Hampshire, USA) in August 1983., and represents thirty years at the forefront of ideas in robotics research. As for the previous symposia, ISRR 2013 followed up on the successful concept of a mixture of invited contributions and open submissions. 16 of the contributions were invited contributions from outstanding researchers selected by the IFRR officers and the program committee, and the other contributions were chosen among the open submissions after peer review. This selection process resulted in a truly excellent technical program which featured some of the very best of robotic research. These papers were presented in a single-track interactive format which enables real conversations between speakers and the audience. The symposium contributions contained in this volume report on a variety of new robotics research results covering a broad spectrum organized into traditional ISRR categories: control; design; intelligence and learning; manipulation; perception; and planning.

This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.

This book discusses various machine learning & cognitive science approaches, presenting high-throughput research by experts in this area. Bringing together machine learning, cognitive science and other aspects of artificial intelligence to help provide a roadmap for future research on intelligent systems, the book is a valuable reference resource for students, researchers and industry practitioners wanting to keep abreast of recent developments in this dynamic, exciting and profitable research field. It is intended for postgraduate students, researchers, scholars and developers who are interested in machine learning and cognitive research, and is also suitable for senior undergraduate courses in related topics. Further, it is useful for practitioners dealing with advanced data processing, applied mathematicians, developers of software for agent-oriented systems and developers of embedded and real-time systems.

This book features selected papers presented at the 15th International Conference on Electromechanics and Robotics “Zavalishin's Readings” – ER(ZR) 2020, held in Ufa, Russia, on 15–18 April 2020. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900–1968) – a Russian scientist, corresponding member of the USSR Academy of Sciences and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006.
UAVs (Unmanned Aerial Vehicle), also known as drones, are becoming attractive in the consumer space due to their relatively low cost and their ability to operate autonomously with minimal human intervention. A user could program the drone with GPS coordinates, and the drone would comply with utmost precision. In order for the drone to operate a preprogrammed flight path, it requires a host of sensors for it to gather data and operate on that data in real time. For instance, a consumer drone typically has obstacle avoidance sensors, a GPS sensor for routing and navigation, and an IMU (Inertial Measurement Unit) for tracking position and orientation. These sensors play a crucial role in both stabilization and navigation of the drone. This report aims to investigate, analyze and understand the complexity involved in designing and implementing an autonomous quadcopter; specifically, the stabilization algorithms. In general, stabilization is achieved using some form of control algorithm. The report covers a popular approach for stabilization (PID Control) found with many open source libraries and contrasts it with an alternative machine learning approach (Neural Networks). Finally, a machine learning based algorithm is implemented and evaluated on a prototype quadcopter, and its results are presented.

Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of “Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 1 includes contributions devoted to Autonomous Ground Vehicles and Mobile Manipulators, as well as Unmanned Aerial and Underwater Vehicles and Bio-inspired Robotics.

Copyright: 13f3605837e00b22452193b6e382e7eb